EUROPEAN FEDERATION OF STATISTICIANS IN THE PHARMACEUTICAL INDUSTRY Representing Statistical Associations in Europe

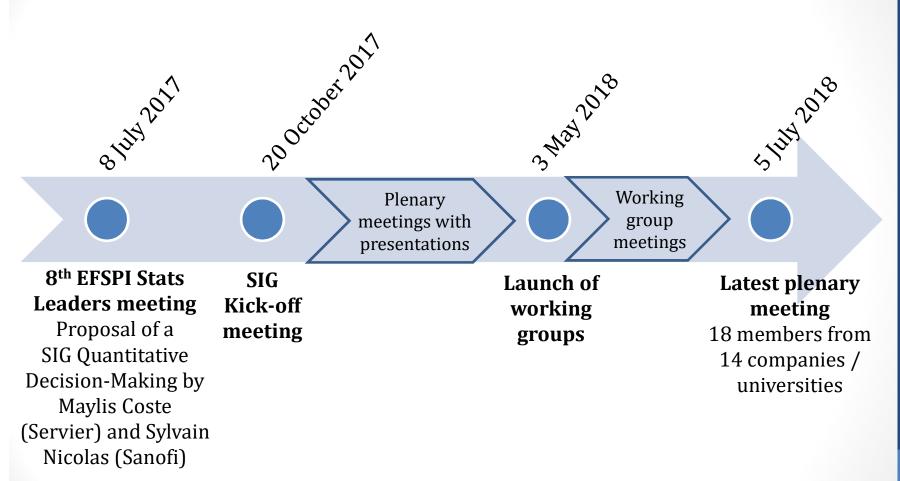
EFSPI SIG Quantitative Decision Making *Experience sharing*

Gaëlle Saint-Hilary

Co-chair of the SIG

PhD Student, Politecnico Di Torino (Italy) and Institut de Recherches Internationales Servier. (France)

EFSPI Statistics Leaders meeting, 12 July 2018



Outline

- Background, members, objectives
- **Examples from the industry: quick overview**
- Working groups
- > 1-day EFSPI meeting
- Collaboration with the SIG Benefit-Risk
- Operational aspects
- Conclusion

2

Background

SIG: Special Interest Group

Members

(as of July 2018)

- Juan Abellan (GSK)
- Gianluca Baio (UCL)
- Nicolas Bonnet (Sanofi)
- Sarah Bray (Amgen)
- Alex Carlton (GSK)
- Pierre Colin, co-chair (Sanofi)
- Maylis Coste (Servier)
- Cecile Dubois (Grunenthal)
- Beki Finch (Roche)
- Paul Frewer (AstraZeneca)
- Heiko Götte (Merck)
- Martin Johnson (UCB Pharma)
- John-Philip Lawo (CSL Behring)
- Emmanuel Pham (Ipsen)
- Laurent Quinquis (Danone)
- Veronique Robert (Servier)
- Gaëlle Saint-Hilary, co-chair (Politecnico di Torino)
- Guido Thömmes (Grunenthal)

CSL Behring

G. Saint-Hilary

Objectives of the SIG

- To **share** (anonymized) **cases studies** of how quantitative decisionmaking methods have been used within pharmaceutical companies
- To perform **literature reviews**, discuss and make **recommendations** on existing methodologies in terms of approach and interpretation
- To **develop new methodologies** or practices where needed
- To **promote the role of the statistician** in supporting decisionmaking in pharmaceutical companies and/or other stakeholders
- To **propose trainings**, **public meetings or publications** to share methods and experience

Examples from Grünenthal

Use of assurance in the design of a trial

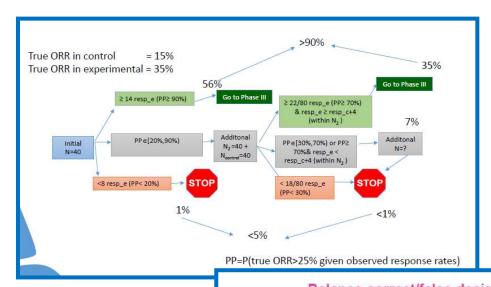
Endpoint	Test	Assurance (%)				
Primary (EP1)	Superiority vs Placebo	93.0				
Co-primary (EP2)	Superiority vs Placebo	89.3				
Secondary endpoints						
Endpoint	Test	Assurance (%)				
Efficacy EP3	Superiority vs Placebo	68.8				
Efficacy EP4	Superiority vs Placebo	21.8				
Safety EP5	Superiority vs Comparator	92.8				
Safety EP6	Superiority vs comparator	77.9				

Guido Thömmes

Bayesian decision framework for a PoC trial

O Bayesian approach proposed by Fisch et al (2014)^a

• The dual criteria will be formulated by means of posterior probabilities

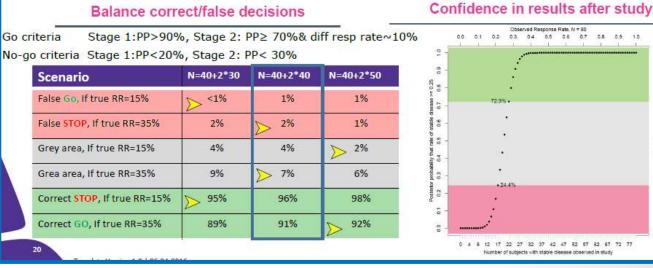

Significance: $Prob\{Effect > 0 | Data\} > 1 - \alpha$

Relevance: $Prob\{Effect > TD|Data\} > 1 - \gamma$.

The decisions are

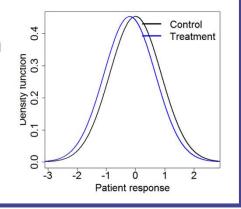
	Significance					
Relevance	Yes	No				
Yes	Go	Consider				
No	Consider	NoGo				

Examples from Merck



Heiko Götte

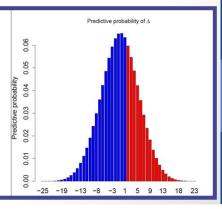
Decision-making framework based on the PoS


Probability of Success

PoS:

Examples from Sanofi

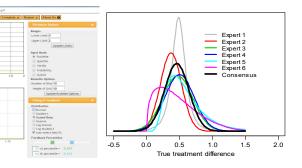
- Model
 - $X_1 \sim N(\mu_1, \sigma_1^2)$, with $n_1 = 284$
 - $X_2 \sim N(\mu_2, \sigma_2^2)$, with $n_2 = 284$
- Information (based on 350+350 previous nationts)
 - $\mu_1 \sim N(0, 0.05^2)$
 - $\mu_2 \sim N(-0.2, 0.05^2)$
 - σ_1^2 and σ_1^2 distributions are obtained through the Cochran theorem (inverse- χ^2)
- Prediction
 - Test for non-inferiority
 - PoS = 0.91 (Monte Carlo approx.)



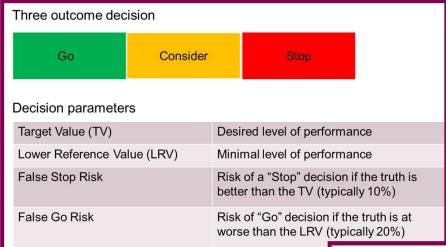
Case studies of PoS

PoS: Probability of Success

- $p_1 \sim Beta(10 \times 0.3, 10 \times 0.7)$
- $p_2 \sim Beta(10 \times 0.3, 10 \times 0.7)$
- Criterion to predict
 - $\mathbb{P}(\Delta \geq 2 | N_1, \pi_1, N_2, \pi_2)$
- Predictive probability = 0.356

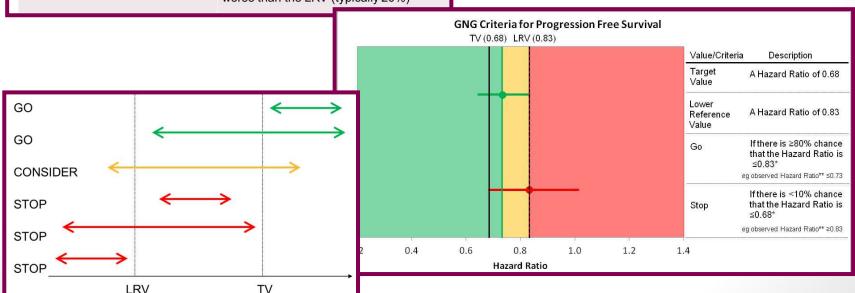

Examples from GSK

Problem definition (project team) Limited /conflicting evidence; Decision problem or high uncertainty statistical model Pre-elicitation phase (project statistician & physician + facilitator) Prepare Decision to Select evidence conduct problem experts method dossier elicitation Elicitation phase (experts + facilitator) Carry out Training elicitation Based on SHELF: SHeffield ELicitation Framework Post-elicitation phase (facilitator) (O'Hagan and Oakley) http://www.tonyohagan.co.uk/shelf/ Documentation

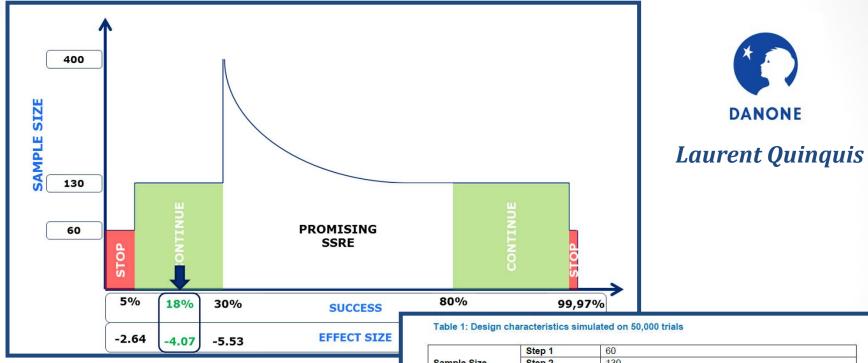

In 2014, GSK implemented a formal expert elicitation process to translate prior data and expert knowledge into quantitative prior distributions

SHELF: framework for prior elicitation

Examples from AstraZeneca



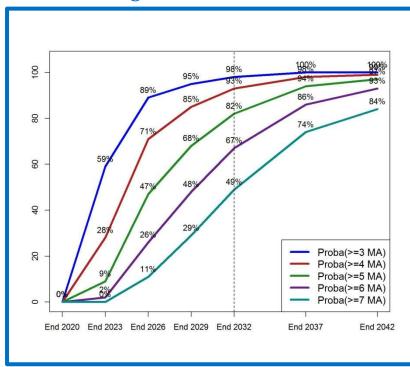
Treatment effect



Paul Frewer

Decision-making framework (OKGO)

Examples from Danone



	Sample Size	Step	W. W.	130 400					
Decision-making framework at interim	Interim Analysis Thresholds: CP/p-value (Observed Effect)	CP for futility Lower CP for SSRE Upper CP for SSRE		≤5% (2.64) 30% (5.53) 80% (9.04)					
	analyses			Overall Sample Size E(N)	CHW	Mehta & Pocock	(IncrN)	Pr(Futile)	(No change)
		H ₁	136.1	86.01%	86.29%	23.0%	7.7%	56.9%	12.4%
	Hypothesis*	Ho	93.1	0.81%	1.05%	10.2%	69.4%	20.3%	0.1%

*50,000 Trial Simulations with a total planned Sample Size of 130 Subjects and an Interim at 60 Subjects, Assuming a Common SD=20; Simulations performed under H0: True Difference in Means = 0 and H1: True Difference in Means = 10 are displayed in the above Table.

Examples from Servier

Predictions of the number of Marketing Authorizations over time

Decision-making at the portfolio level

Gaëlle Saint-Hilary

Portfolio financial risk-value profile

Assurance, Probability of Success Prior elicitation

Predictions

Decisions at the development level

Decisions at the portfolio level

Simulations (of trials, developments, portfolios) Decision-making frameworks

Go/no-Go

Decisions at the trial level

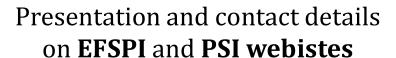
Confidence, uncertainty

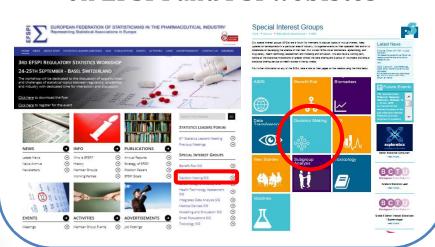
Working groups

- 3 working groups (as of July 2018):
 - Decisions at the trial level
 - Decisions at the development level
 - Decisions at the portfolio level
- Short-term objective (Q3-4 2018): prepare a survey to collect decision-makers' needs and preferences
- → Help from the Stats Leaders to reach our targeted public may be needed!
 - Long-term objectives: literature review, recommendations, develop new methodologies, propose trainings and seminars/webinars (same as for the whole SIG)

1-day EFSPI meeting on decision-making in drug development

- Joint collaboration of our SIG and the EFSPI Scientific Committee (SC)
- Organizing Committee: Emmanuel Quinaux (IDDI, chair, SC), David Wright (AZ, SC), Paul Frewer (AZ, SIG), Guido Thömmes (Grunenthal, SIG), Gaëlle Saint-Hilary (Servier/PoliTo, SIG)
- When? Last week of November / Beginning of December
- Where? At Servier, Suresnes (near Paris)
- Who? Potential speakers include Tony O'Hagan (Sheffield uni.), Paul Frewer (AZ), Nigel Stallard (Warwick uni.), Maria Costa (Novartis), Tom Parke (Berry consultant), Juan Abellan (GSK) + 1 from Health Authorities


Collaboration with the SIG Benefit-Risk


- **Benefit-Risk assessment** is an important aspect of decision-making in drug development
- Activities of our SIGs should not be overlapping
- ➤ Maria Costa (Novartis), chair of the SIG Benefit-Risk, gave a presentation at our SIG meeting on May 3rd 2018
- Post-meeting recommendation: within each working group, each time a method involving both efficacy and safety is identified, consider a collaboration with the SIG Benefit-Risk
- Maria Costa will give a presentation at the 1-day EFSPI meeting
- More generally, regular interactions between our SIGs will be planned

Operational aspects

Meetings

- Plenary meetings: one every two months
- Working group meetings: at least once a month

Sharepoint provided by Sanofi

PSI would help support activities, promote meetings and webinars, and share other SIG outputs

Conclusion

Great start!

- Motivated and experienced team
- Future objectives (2018/2019)
 - Social networking (blog / Twitter / LinkedIn / Facebook...)
 - Webinars
 - Publications?

• Questions? Remarks? Suggestions?